Regulation of reactivated contraction in teleost retinal cone models by calcium and cyclic adenosine monophosphate
نویسندگان
چکیده
We have been using lysed cell models of teleost retinal cones to examine the mechanism of contraction in nonmuscle cells. We have previously reported that dark-adapted retinas can be lysed with the detergent Brij-58 to obtain cone motile models that undergo Ca++- and adenosine triphosphate (ATP)-dependent reactivated contraction. In this report we further dissect the roles of ATP and Ca++ in activation of contraction and force production by (a) characterizing the Ca++ and nucleotide requirements in more detail, (b) by analyzing the effects of inosine triphosphate (ITP) and the ATP analog ATP gamma S and (c) by testing effects of cyclic adenosine monophosphate (cAMP) on reactivated cone contraction. Exposing lysed cone models to differing free Ca++ concentrations produced reactivated contraction at rates proportional to the free Ca++ concentration between 3.16 X 10(-8) and 10(-6) M. A role for calmodulin (CaM) in this Ca++ regulation was suggested by the inhibition of reactivated contraction by the calmodulin inhibitors trifluoperazine and calmidazolium ( R24571 ). The results of analysis of nucleotide requirements in lysed cone models were consistent with those of smooth muscle studies suggesting a role for myosin phosphorylation in Ca++ regulation of contraction. ATP gamma S and ITP are particularly interesting in that ATP gamma S, on the one hand, can be used by kinases to phosphorylate proteins (e.g., myosin light chains) but resists cleavage by phosphatases or adenosine triphosphatases (ATPases), e.g., myosin ATPase. ITP, on the other hand, can be used by myosin ATPase but does not support Ca++/calmodulin mediated phosphorylation of myosin light chains by myosin light chain kinase. Thus, these nucleotides provide an opportunity to distinguish between the kinase and myosin ATPase requirements for ATP. When individual nucleotides were tested with cone motile models, the nucleotide requirement was highly specific for ATP; not only ITP and ATP gamma S, but also guanosine triphosphate, cytosine triphosphate, adenylyl-imidodiphosphate (AMPPNP) failed to support reactivated contraction when substituted for ATP throughout the incubation. However, if lysed cones were initially incubated with ATP gamma S and then subsequently incubated with ITP, the cones contracted to an extent that was comparable to that observed with ATP. As observed in skinned smooth muscle, adding cAMP to contraction medium strongly inhibited contraction in lysed cone models.
منابع مشابه
Regulation of reactivated elongation in lysed cell models of teleost retinal cones by cAMP and calcium
Teleost retinal cones elongate in the dark and contract in the light. In isolated retinas of the green sunfish Lepomis cyanellus, cone myoids undergo microtubule-dependent elongation from 5 to 45 micron. We have previously shown that cone contraction can be reactivated in motile models of cones lysed with Brij-58. Reactivated contraction is both actin and ATP dependent, activated by calcium, an...
متن کاملCalcium-independent contraction in lysed cell models of teleost retinal cones: activation by unregulated myosin light chain kinase or high magnesium and loss of cAMP inhibition
The retinal cones of teleost fish contract at dawn and elongate at dusk. We have previously reported that we can selectively induce detergent-lysed models of cones to undergo either reactivated contraction or reactivated elongation, with rates and morphology comparable to those observed in vivo. Reactivated contraction is ATP dependent, activated by Ca2+, and inhibited by cAMP. In addition, rea...
متن کاملReactivation of contraction in detergent-lysed teleost retinal cones
Teleost retinal cones contract in the light and elongate in the dark. In the green sunfish, Lepomis cyanellus, the necklike myoid region of the cone contracts from as much as 120 micrometers (midnight dark-adapted) to 6 micrometers in fully light-adapted state. When dark-adapted fish are exposed to light (1.4 lux), cone myoids contract with a linear rate of 1.5 +/- 0.1 micrometers/min. We repor...
متن کاملEffects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas
We have examined the effects of changes in extracellular ionic composition on cone and retinal pigment epithelium (RPE) retinomotor movements in cultured isolated teleost retinas. In vivo, the myoid portion of teleost cones contracts in the light and elongates in the dark; RPE pigment disperses in the light and aggregates in the dark. In vitro, cones of dark-adapted (DA) retinas cultured in con...
متن کاملInduction of Dark-Adaptive Retinomotor
In the teleost retina, the photoreceptors and retinal pigment epithelium (RPE) undergo extensive movements (called retinomotor movements) in response to changes in light conditions and to an endogenous circadian rhythm . Photoreceptor movements serve to reposition the light-receptive outer segments and are effected by changes in inner segment length . Melanin granule movements within the RPE ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 98 شماره
صفحات -
تاریخ انتشار 1984